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The complexity of the stream of consciousness
Peter Coppola 1,2, Judith Allanson2,3, Lorina Naci 4, Ram Adapa 1, Paola Finoia1,5, Guy B. Williams 2,6,

John D. Pickard 2,5,6, Adrian M. Owen7, David K. Menon 1,6 & Emmanuel A. Stamatakis 1,2✉

Typical consciousness can be defined as an individual-specific stream of experiences.

Modern consciousness research on dynamic functional connectivity uses clustering techni-

ques to create common bases on which to compare different individuals. We propose an

alternative approach by combining modern theories of consciousness and insights arising

from phenomenology and dynamical systems theory. This approach enables a representation

of an individual’s connectivity dynamics in an intrinsically-defined, individual-specific land-

scape. Given the wealth of evidence relating functional connectivity to experiential states, we

assume this landscape is a proxy measure of an individual’s stream of consciousness. By

investigating the properties of this landscape in individuals in different states of conscious-

ness, we show that consciousness is associated with short term transitions that are less

predictable, quicker, but, on average, more constant. We also show that temporally-specific

connectivity states are less easily describable by network patterns that are distant in time,

suggesting a richer space of possible states. We show that the cortex, cerebellum and

subcortex all display consciousness-relevant dynamics and discuss the implication of our

results in forming a point of contact between dynamical systems interpretations and

phenomenology.
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The modern scientific study of consciousness is marred by a
paradox: the objective understanding of a subjective
experience. Beyond this, the contemporary neuroscientific

endeavour encounters fundamental questions: how do the
material and the experiential correspond? How can we compare
two subjective experiences? Here we propose an approach to
address these two questions.

Contemporary neuroscientific theories have tackled con-
sciousness by proposing that functional relationships among
neurophysiological events are fundamental to the emergence of
consciousness1–4. This may underpin the seemingly unitary nat-
ure of experience via the integration of different information (e.g.,
visual and auditory) and may mediate the dynamic meta-stable
re-organisation which is essential to normal brain function and
characterises a typical stream of consciousness5–11.

In functional magnetic resonance imaging (fMRI), “functional
connectivity” is often measured as the correlation between blood-
oxygenation-level-dependent (BOLD) signals from different brain
regions12. The functional networks emerging from these corre-
lations have been consistently related to specific mental contents
and cognitive states13–22. This wealth of evidence suggests that
the configuration of brain region connectivity is relevant to spe-
cific behavioural contexts and corresponds, at least in part, to
subjective phenomenology (i.e., experience) or “mental states”.
Furthermore, in consonance with theoretical accounts, empirical
evidence in the last decade has shown that typical “resting state”
functional connectivity networks “disintegrate” in unconscious or
sedated states23–29.

Given the correlation between functional network disintegra-
tion and unconsciousness, and between network configuration
and cognitive state; in this resting state study we explicitly adopt a
framework that assumes the temporal variation of functional
network configuration is related to the variations of the verna-
cular “stream of consciousness”. In other words, we assume
changes in connectivity patterns correspond, at least in part, to
phenomenological fluctuations in mental state and experience
(see30–34 for ontological underpinnings).

In fact, the body of research outlined above has been advanced
by characterising different conscious states in terms of the
dynamics of their functional networks25,27,35–38. These show that
the connectivity states visited by healthy conscious subjects are
topologically more complex and display rich and structured
temporal patterns compared to altered consciousness.

To enable comparisons between conditions and individuals,
these studies estimate typically re-occurring connectivity patterns
via centroid-based clustering. These studies employ an estimation
of different average connectivity states across individual, condi-
tion and time, which, although fruitful, can at best approximate a
study of a specific individual’s dynamic experiential subjectivity.
Expressly, by estimating states across all timepoints, clustering
techniques discount the temporal unfolding of the stream of
consciousness. Furthermore, the comparison of the same con-
nectivity patterns across individuals from highly heterogenous
conditions reduces individual subjectivity to an “average dyna-
mical state” of limited interpretability.

To address this gap, we provide an empirical approach that
highlights the dynamic neural correlates of an individual’s sub-
jective experience that is interpretable in a dynamical systems
perspective. We base our approach on the phenomenological
observation that any individual experience can be characterised
by the experiences anteceding it and the experiences it may lead
to2,9,10,31,39. Just as any neural state must be understood within its
own systemic and dynamic context, we postulate that the intra-
individual context of any experiential state is foundational to its
subjective value9,10,40,41. As mentioned above, we also assume a
stable isomorphic mapping between a connectivity and a mental

state, by which the difference between two mental states should
be proportional to the difference between the corresponding
neural states34.

In dynamic terms8 a complex system can be conceptualised as
occupying a specific space in a landscape of many possible states.
In a conscious system, each state is experientially meaningful due
to the subject’s modelling of its own past and future in relation to
the present41–44. Therefore, for each individual, we describe each
temporally-specific connectivity state by its similarity to all other
available past and future states. We thus obtain an individual-
specific, intrinsically defined, temporal landscape via the rela-
tionships between all dynamic connectivity patterns. In this
manner, we are able to investigate each individual’s brain
dynamics; specifically, the properties of short-term transitions
(~2s) and how informative each state is compared to all others
over longer periods of time (>26s). This approach is related to
several theoretical concepts that are relevant to the neuroscientific
study of consciousness. In accordance with the spatiotemporal
theory of consciousness, we focus on the intrinsic time and space
constructed by the brain, enabling us to study the consciousness-
relevant features of the resulting spatiotemporal landscape4,45,46.
The present approach is also related to theoretical concepts of the
cause-effect repertoire of information integration theory (defined
as the repertoire of all possible past and future states given the
present state2) and entropy (by which consciousness is char-
acterised by high degrees of information specificity and unpre-
dictability; entropic brain hypothesis1), to define a proxy measure
of the stream of consciousness. Beyond such theoretical
antecedents34 such a landscape has been previously created as an
outcome target to evaluate brain computational models under the
name of functional connectivity dynamics6,47,48. In contrast, the
present research will directly analyse the properties of this
intrinsically-defined dynamic landscape4,31 with the object of
creating an explicit link between phenomenological and dyna-
mical systems perspectives.

We also apply an analogous approach to diffusion tensor
imaging (DTI) data, by which every functional connectivity state
is defined intrinsically by its similarity to the underlying struc-
tural connectivity pattern. This may indicate how connectivity
states vary in relation to the structural connections that underlie
it and whether the dynamic relationship between structure and
function is affected in unconsciousness.

We hypothesise that individuals in a normal conscious resting
state will display specific dynamic characteristics in network
transitions (e.g., have higher unpredictability) and will show a
more complex landscape or repertoire of states1,2,4,45. We analyse
four conditions, presented here in order of presumed level of
awareness: Healthy Controls: Awake and Moderate propofol
sedation; (18 participants49; Collected in Cambridge, UK); 11
patients in a minimally conscious state (MCS, collected in
Cambridge, UK); and 12 participants with Unresponsive Wake-
fulness Syndrome (UWS, collected in Cambridge, UK). To ensure
results are reproducible, we also use an additional propofol
anaesthesia dataset28, comprised of 16 participants in a control
awake, mild sedation and deep sedation conditions. We predict
that the measures of intrinsic dynamics will reliably scale with
decreasing levels of consciousness1,2,4,50. We make use of several
brain region definitions (Supplementary Note 1), various pre-
processing techniques (Supplementary Note 2) and data to assess
convergence of results. If these hypotheses are confirmed at a
whole brain level, we will investigate whether similar effects can
be differentially explained at a subsystem level (cortex, subcortex
and cerebellum). Other than being relevant to theoretical pre-
dictions and debates in the literature (e.g.2,30,51–53), this latter
hypothesis will assess whether anatomically differentiated sub-
systems (cortex, subcortex and cerebellum) display a temporal
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complexity of spatial connectivity patterns which scales with
levels of consciousness.

Results
To obtain a proxy measure of the stream of consciousness, we
divided the data spatially into brain regions that covered the
whole brain (Supplementary Note 1), and then divided the
confound-corrected timeseries (see methods) into different
overlapping time windows (24 timepoints moved by 1 time-
point, Fig. 1a; see Supplementary Note 2 for alternative methods
used to assess convergence). By correlating the timeseries within
each window across brain regions we obtained connectivity
matrices that varied in time. Subsequently, we calculated the
similarity between each of the temporally-specific connectivity
matrices (Fig. 1b) for each individual. We thus obtained a
matrix which we called the Meta-Matrix (MM, Fig. 1c), a
similarity matrix of connectivity matrices organised linearly in
time. This represents a space of intrinsically defined dynamics
(Fig. 1d).

Predictability of intrinsic dynamics. We sought to investigate
the predictability of the intrinsic dynamics of individuals in dif-
ferent states of consciousness. To assess this, we constructed a
simple synthetic model (Fig. 1e) in which the similarity between
different connectivity patterns decayed monotonically as a func-
tion of time. Thus, in this model, timepoints that were further
away always displayed less similarity than closer timepoints,
effectively modelling a simple dynamic trajectory in state space
(e.g., Fig. 1d) that never returns on itself.

We assessed whether the similarity to this simple dynamic
model scaled with levels of consciousness (I.e., control awake >
moderate sedation> minimally conscious state > unresponsive
wakefulness syndrome) by using ordinal logistic regressions
(OLR), in which the similarity to the temporal decay of similarity
model (TDSM, Fig. 1e) was the predictor and the conditions
ordered by presumed level of awareness, the dependent variable.

As expected, unconscious conditions were more similar with
the temporal similarity decay model (TSDM) than the more
conscious states (Odds Ratio (OR):3.17 p= 0.0001 C.I.
(2.5%:97.5%)= 1.78:6.22; Fig. 1f). Remarkably, this effect was
robust across different TDSM models (linear or exponential
decays), parcellations, data and pre-processing pipelines (except
when high pass filter was used; see methods and Supplementary
Note 3). This may suggest that when a subject is unconscious,
their immediate past and future states are more predictably
similar to the present state, perhaps indicating sluggishness in
short-term connectivity state reconfiguration. Alternatively, this
may indicate that there is little similarity of states over longer
periods of time in unconsciousness, and thus an altered repertoire
of states. Of note is that the TDSM model explained the (MM)
intrinsic dynamics of certain UWS patients particularly well
(Fig. 1f). Thus, gradual, non-recursive transitions in connectivity
patterns poorly described conscious individuals which indicates
these may be characterised by short term unpredictable FC
reconfiguration, complexity of distal state exploration and
potentially intrinsic self-organisation. To further tease apart these
possible effects, below we explore the properties of short (2s) and
long term (>26s) intrinsic dynamics.

Proximal temporal complexity. We investigated to what extent
shifts in sequential connectivity states that are temporally close
to each other may be predictive of levels of awareness (Fig. 2a).
This autocorrelational information is represented in the MM by
the values close to the main diagonal (Fig. 2b, in green) which
are characterised by high similarity. The distance (i.e., inverse

of similarity; reproduced with other metrics) between each
temporally successive connectivity pattern is represented
(timepoint 1 to 2; 2 to 3 etc.; see Fig. 1a) in the first subdiagonal
(the second longest diagonal, just above/below the main diag-
onal). On this timeseries of short term connectivity pattern
similarities, we calculated measures of central tendency (e.g.,
median), distribution breadth (e.g., standard deviation), and
temporal complexity measures (i.e., sample entropy54; see Sup-
plementary Note 4 for alternative methods). We found that, on
average, unconsciousness tended to be characterised by higher
similarities in short temporal sequences (OR= 4.06, C.I.1.7:9.97,
p= 0.002). This effect was particularly prominent in deep
anaesthesia from the second dataset and in the UWS patients
(Fig. 2c; see Supplementary Note 4 for deep anaesthesia data).
Thus, intrinsically defined network dynamics had a lower rate of
change or speed (less distance/difference over time [2s]) in
unconsciousness.

We then investigated the distribution of short-term temporal
distances (Fig. 2d). Intriguingly, we found that the standard
deviation of proximal time similarity values decreased with levels
of awareness (OR= 3.50, C.I.= 2.02:6.60 p= 0.00001), in con-
trast to what would be expected1. We interpreted this to signify
that consciousness is characterised by smoother, more constant,
intrinsic dynamic rates of change (~speed). To confirm this, we
took the average of the absolute derivative of the proximal
similarity values, indicating how the speed itself varied over time
(i.e., whether the rate of change accelerated/decelerated) and
found it was highly correlated to the standard deviation of
proximal time similarity values (Rho= .84; Supplementary Note 4
for reproductions). Thus, although on average faster, changes in
network configurations tend to be, overall, more constant in
consciousness (i.e., tend to not accelerate much).

Finally, we found that the temporal complexity (measured via
sample entropy54, reproduced with effort to compress55) of
proximal timepoint network transitions increased with levels of
awareness (OR:4.41, p= 0.000006 C.I. 2.37:9.1; Fig. 2e). This
indicates that the moment-to-moment transitions of connectivity
states are more unpredictable in consciousness.

These results were robust across various measures and control
analyses (Supplementary Note 4) and lead to interesting
characterisations of the temporally proximal transitions of
networks during awareness. Whilst network transitions tend to
be faster and have unpredictable temporal sequences, transitions
overall tend to be smoother, with more constant rates of change.
This suggests that consciousness is associated with network
dynamics that are temporally complex, but nonetheless display a
certain structure (i.e., more constant transitions).

Distal dynamic complexity. Having explored the consciousness-
related properties of short-term transitions between different
network states, we sought to characterise the wider, distally-
defined, state space. Whilst the proximal analyses investigated
how networks changed from one timepoint to another, this distal
part of the analyses investigates where one connectivity pattern
(i.e., a column in the MM) sits in relation to all other individual
specific states (Fig. 3a).

To ensure proximal timepoints did not influence results, we
took the off-diagonal triangle of the MM that represents
similarities between connectivity patterns that are distal in time
(Fig. 3b). By removing proximal timepoint autocorrelations, we
are able to investigate the complexity of an individual’s
connectivity position in state space over longer periods of time.
We thus removed from the MM the 13 timepoints (26s) closest to
each state as this meant that more than half of the sliding window
was not overlapping (Fig. 1a). We also repeated the analyses with
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Fig. 1 Meta-Matrix formation and predictability of intrinsic dynamics. a Shows the methodological approach we adopted in this study. We parcellate the
data spatially and then temporally using the sliding window approach, where one window is comprised of 24 timepoints and is moved forward by one
timepoint. By correlating all parcellated brain regions within each widow we obtain time-varying connectivity matrices (b; see Supplementary Note 2 for
alternative methods). By comparing all connectivity matrices to all other sampled ones (by vectorising the upper triangle and correlating them via Pearson’s
correlation) we obtain the Meta-Matrix c, also known as functional connectivity dynamics47. Each column in the meta matrix represents one connectivity
matrix and all the cells within that column represent its similarity to all available past and future connectivity states. Thus, each connectivity pattern is
described by its intrinsic relationship to all other connectivity states. By calculating Euclidean distance on these relationships and reducing their dimensions,
we can represent the MM on a 2D plane d. In d, each point represents a connectivity state and its vicinity to other points represent its similarity. This may
be interpreted as a representation of an individual moving through possible connectivity states as the scan progresses (hotter colour= later in the scan).
Noticeable is that the UWS has consecutive states that are closer (more similar to each other). We tested the predictability of the whole MM by
comparing the meta-matrix to the temporal decay of similarity model (TDSM) e, in which timepoints that are closer to each other are more similar (three
of these models constructed, see methods; first exponential decay model presented in this figure). f We find that the similarity of the meta matrix to the
TDSM predicts increasing levels of awareness (control awake > sedation >minimally conscious state > unresponsive wakefulness syndrome) (Odds
Ratio= 3.17, p= 0.0001). TDSM= temporal decay of similarity model, Con= control awake n= 18, SED= sedation n= 18; MCS=minimally conscious
state n= 11; UWS= unresponsive wakefulness syndrome n= 12. Red rhombi represent the mean, whilst blue triangles, the median.
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a 24-point cut-off (48s) as this ensured sliding windows were not
overlapping. We then created another symmetrical matrix from
the off-diagonal triangle by mirroring it across the new diagonal
(Fig. 3b, c) and obtained the distal meta-matrix (dMM; Fig. 3c).
Each column of this new matrix represents a connectivity pattern
and the cells represent the similarity to other connectivity
patterns that are distant in time. The dMM (Fig. 3c) therefore
approximates the position of a specific connectivity state in a
wider space of possible states, via the relationship (i.e., distance)
to all other states. Whilst the proximal space dynamics are more
easily understood (as time progresses, similarity tends to decay; or
distance tends to increase [see TSDM Fig. 1e]), the dMM may
approximate a more complex and higher dimensional state space

(e.g., see Fig. 1d; see Supplementary Note 5 for further
characterisations). The difference between the proximal and
distal space is corroborated by the difference in similarity values
and their organisation (see differences in colour in different parts
of the MM (e.g., Fig. 3b), also compare the TDSM (Fig. 1e) to the
dMM (Fig. 3b, c)). Interestingly, the average maximum similarity
found in the dMM across individuals was r= 0.37 (standard
deviation= 0.092; for a higher granularity parcellation, mean
maximum r = 0.26, standard deviation= 0.089).

We thus sought to investigate how properties of the dMM
scale with levels of consciousness. We found that there was no
appreciable difference in the average and variation of the
similarity values represented in the dMM (Supplementary

Fig. 2 Proximal network transitions; description and analyses. a Depicts the short-term transitions between each successive connectivity pattern
(time= 2s). The distance between these was measured via Pearson’s correlation (see Supplementary Note 2 for alternative distance metrics used).
b Shows where in the meta-matrix this information is represented (along the diagonal); shown by a green arrow. On the resulting timeseries, describing the
rate of change of connectivity patterns over time, we calculated the average c, the standard deviation d and the sample entropy (e; see Supplementary
Note 4 for alternative methods). These measures were inserted as an independent variable in ordinal logistic regression with conditions ordered according
to presumed levels of awareness (control awake > sedation > minimally conscious state > unresponsive wakefulness syndrome). CON= control awake
n= 18, SED= sedation n= 18; MCS=minimally conscious state n= 11; UWS= unresponsive wakefulness syndrome n= 12. OR= odds ratio. Red rhombi
represent the mean, whilst blue triangles, the median.
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Note 6). This suggests that with consciousness there is no effect
on the tendency to return to similar states, or in the variations
of distal definitions of a state. Conversely, when we examined
the compressibility of the vectors that distally define each state
(columns of the dMM, then averaged; Fig. 3c), we found a
robust scaling with levels of awareness (OR= 5.5, CI=
2.56:12.98, p= 0.00004; Supplementary Note 6). This measure
approximates how complex a state is on average as defined by

its position (relative distance to its distal past and future) in the
wider space of possible states. We take this to mean that states
as defined within their intrinsic dynamic space (distally defined;
dMM) are less easily describable in awareness. This may be
evidence that the position of a state within its dynamic
landscape (i.e., “state space” or “phase space” in dynamical
systems theory) becomes more complex with the emergence of
consciousness.

Fig. 3 Distal meta-matrix description and analyses. a Shows the relationship (i.e., distance) of one connectivity pattern to all others that are distal in time.
By taking the off-diagonal values of the meta-matrix (represented by a red triangle in b) and mirroring it across the new diagonal we obtain the distal meta-
matrix (dMM; c). This represents relationships (Pearson correlation) between connectivity patterns that are distant in time (distances of 13 and 24
timepoints were chosen, as these corresponded to more than half and the entire sliding window [Fig. 1a] respectively; latter distance is displayed here),
therefore providing a metric of the definition of connectivity states over longer periods of time. We calculated complexity measures (ETC and sample
entropy) on each column of the distal meta-matrix and averaged across these (represented by the red rectangle in c; see Supplementary Note 6 for
reproduction). This average complexity measure was inserted in an ordinal logistic regression (d) with conditions ordered according to presumed levels of
awareness as the dependent variable (control awake > sedation > minimally conscious state > unresponsive wakefulness syndrome; 13 proximal timepoints
removed in this instance). e Shows the shared variance between the distal and proximal measures (spearman correlation; p < 0.001). dMM= distal meta-
matrix, Con= control awake n= 18, SED= sedation n= 18, MCS=minimally conscious state n= 11, UWS= unresponsive wakefulness syndrome n= 12;
OR= odds ratio, ETC= Effort-to-compress, SampEn= Sample entropy, SD= standard deviation, prox= of proximal temporal transitions. Red rhombi
represent the mean, whilst blue triangles, the median.
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Relationship between distal and proximal measures. We found
that with consciousness, proximal transitions tend to be less
predictable, quicker, but, on average, more constant. Further-
more, the wider dynamic state space (approximated by the
dMM), seems to be more complex (“less compressible”) in con-
sciousness. We investigated to what extent these measures held
unique variance. We found that, all variables were correlated to
each other (p < 0.001, Fig. 3e), although there seemed to be evi-
dence the different measures displayed some independent var-
iance (averaged explained variance 22%), specifically between
proximal (Fig. 2c, d, e) and distal measures (Fig. 3d; see Sup-
plementary Note 7 for reproduction). We then inserted the
variables with the highest effect sizes (odds ratios) for the prox-
imal and distal measures into the same ordinal logistic regression
as covariates (namely sample entropy of proximal transitions and
compressibility of dMM). We found that, there was evidence each
of these had independent predictive power (dMM compressibility
OR= 3.82, p= 0.0004; Proximal SD OR= 1.93, p= 0.02),
although this did not reproduce unequivocally across different
control analyses (Supplementary Note 7 for details). We therefore
cannot conclude whether proximal and distal measures have
unique predictive power.

MM measures in the cortex, subcortex and cerebellum. We
then investigated whether any of the intrinsic dynamic effects
(proximal and distal, Figs. 2 and 3) can be ascribed to the cortex,
subcortex and cerebellum individually. We found the cortex and
the subcortex tended to have high effect sizes for all measures,
whilst the cerebellum was only liminally significant (see Table 1).
Remarkably, the subcortical effects reproduced across all control
analyses, whilst the cortex did not reproduce with global signal
regression in the proximal measures (Supplementary Note 8 for
details). We then sought to investigate whether these cytoarchi-
tectonically distinct systems had unique predictive power. We
therefore inserted the intrinsic dynamic properties of the cortex,
subcortex and cerebellum as covariates in the same ordinal
logistic regression. We ran a separate ordinal logistic regression
for each measure, namely the average, standard deviation and
sample entropy for the proximal transitions and the compressi-
bility of the dMM.

We found that the only effect that consistently reproduced
across analyses (described in Supplementary Note 9) was the
dMM compressibility of the cortex, whilst the significance of the
temporal properties of the subcortex and cerebellum seemed to
depend of pre-processing contingencies (Supplementary Note 2
for description of preprocessing contingencies; and Supplemen-
tary Note 9 for results).

Connectivity pattern dynamics in relation to structural con-
nectivity. We sought to further investigate brain dynamics in
consciousness via the intrinsic relationship between dynamic
functional connectivity and static structural connectivity (measured

via tractography of diffusion tensor imaging). For this analysis,
instead of comparing each functional connectivity pattern to all
functional patterns available, we compared each of the temporally-
specific functional connectivity patterns to the same individual’s
structural pattern (which were parcellated using the same region
definitions). We thus obtain a timeseries of how similar each
connectivity pattern was to the structural pattern (Fig. 4a). On this
timeseries, we calculated the sample entropy and effort to compress.
Similarly, to the above analyses, we inserted the complexity mea-
sures into an OLR as a predictor with the ordered dependent
variable composed of a control condition, minimally conscious
state, and unresponsive wakefulness syndrome respectively. This
enables us to investigate how the dynamic relationship between
structural and functional connectivity relates to different levels of
consciousness.

For the whole brain, the relationship between structural and
dynamic functional connectivity was more complex (across
sample entropy and effort to compress measures) in higher levels
of consciousness (OR= 2.95, p= 0.002 C.I.= 1.39:6.27; Fig. 4b).
This result reproduced across various analysis permutations and
parcellations (Supplementary Note 10) and suggests that func-
tional connectivity patterns have more freedom to vary in relation
to the structural connectivity that is presumed to underpin it. In
contrast to previous research35, we do not cluster across
functional states, but consider the unadulterated functional
dynamics of each individual and characterise it by comparison
with the individual-specific structural connectome. If we take the
assumption that, to an unknown extent, connectivity states
correspond to phenomenological states, these results may be
taken to indicate the increased possibility of phenomenological
variability that arises with consciousness.

We then tested whether a similar effect is to be found using the
structural and dynamic functional connectivity of cortex,
subcortex, and cerebellum parcellations. The complexity of the
relationship between dynamic functional and structural con-
nectivity did indeed increase with levels of consciousness in the
cortex (OR= 5.42, p= 0.003; C.I.= 2.05:14.35). The subcortex
(OR= 3.84, p= 0.0004, C.I.= 1.72:8.51) and the cerebellum
(OR= 3.36, p= 0.001, C.I.= 1.49:7.53) showed the same pattern
(Fig. 4b). Interestingly, when the complexity of the structure-
function dynamic relationship for each subsystem was inserted in
the same OLR, both the cortex (p= 0.01) and the subcortex
(p= 0.0003) seemed to retain independent predictive power,
whilst the cerebellum was not significant (p= 0.07; see Supple-
mentary Notes 10, 11 for various reproductions). These analyses
show that complex structure-function dynamics are a character-
istic of different subsystems in consciousness, and provide
important evidence for debates in the literature.

Furthermore, we tested whether there were any differences in
the maximum similarity between structural and functional
connectivity patterns. We found that the DOC conditions were
significantly different from the control condition for the whole
brain (Con >MCS Z=−2.17, p= 0.029; Con > UWS: Z=−2.09,

Table 1 Results for proximal and distal measures for the cortex, subcortex and cerebellum.

Measures Cortex Subcortex Cerebellum

Odds Ratio P Value Odds Ratio P Value Odds Ratio P Value

Proximal SampEN 3.24 0.000161 2.55 0.000015 2.58 0.09
Proximal STD 3.42 0.000031 2.73 0.000005 3.58 0.05
Proximal Median 3.67 0.000975 3.53 0.000028 2.76 0.07
dMM ETC 6.60 0.000002 3.98 0.000013 2.14 0.09

Presented are Odds Ratios, and P-Values for each measure (rows) and each system (columns). ETC effort-to-compress, STD standard deviation.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04109-x ARTICLE

COMMUNICATIONS BIOLOGY |          (2022) 5:1173 | https://doi.org/10.1038/s42003-022-04109-x | www.nature.com/commsbio 7

www.nature.com/commsbio
www.nature.com/commsbio


p= 0.036). However, cortex (Con >MCS: Z=−1.73 p= 0.083,
CON > UWS: Z=−2.065, p= 0.038) and the subcortex (Con >
MCS: Z= 0.4719, p= 0.6370, Con > UWS: Z=−2.5765,
p= 0.0100) displayed differences only for UWS. Interestingly,
the subcortical maximum similarity between structural and
functional connectivity was close to significant when comparing
UWS and MCS (z=−1.93, p= 0.0525). However, these tests do
not survive multiple comparison correction.

These results suggest that, while functional connectivity
patterns of conscious participants are characterised by greater
variations in relation to the structural connectivity, DOC patients
may display higher similarity to the structural patterns and less
variations over time according to severity. To the best of our

knowledge, we show for the first time, that the complexity of
functional-structural dynamics of the cerebellum, the subcortex
and cortex, scale monotonically with level of awareness in DOC.

Thus, the functional connectivity dynamics of consciousness
are characterised by a greater freedom, and are able to depart
from the underlying structural connectivity as experiences unfold
over time.

Discussion
Our results show that the network dynamics of awareness display
specific characteristics. In consciousness, transitions between
connectivity states were on average faster, yet overall maintain a

Fig. 4 Complexity of structure-function dynamic relationship. Illustration of method (a) for the sample entropy of the relationship between functional
dynamic and tractography of diffusion tensor imaging data. We measured the similarity (using Pearson’s correlation) of each dynamic functional
connectivity state to that of the underlying structural connectivity (measured via tractography). From this we obtained a string of similarity values on which
complexity measures (sample entropy and effort to compress) were calculated. This value was then inserted as the predictor variable into an ordinal
logistic regression. Conditions, ordered according to presumed level of awareness (control awake > minimally conscious state> unresponsive wakefulness
syndrome), were the dependent variable (b). Shown are the results for the whole brain, the cortex, the subcortex and cerebellum. DTI= diffusion tensor
imaging, Con= control awake n= 18, MCS=minimally conscious state n= 11, UWS= unresponsive wakefulness syndrome n= 12 (n= 11 for cerebellar
results). OLR= ordinal logistic regression. Red diamonds represent the mean while blue triangles the median.
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more constant speed. We found short term transitions were also
more unpredictable, whilst long term intrinsic descriptions of a
connectivity state were more complex (i.e., ‘hard to summarise’).
We also found a higher degree of temporal complexity in the
intrinsic dynamic relationship between functional connectivity
state to their structural underpinnings, implying greater freedom
of functional variation in relation to the structural backbone.
Given the consistent relationship between network connectivity
and cognitive states13–22 these specific temporal network prop-
erties may be related to phenomenological dynamics of mental
states and content1,2,4.

The intrinsic temporal organisation of neural activity has been
thought to provide a fundamental scaffold on which unified
experience may emerge4,56–58. Previous studies have in fact
showed a disruption of intrinsic temporal structure (e.g., self-
similarity) of BOLD and electroencephalogram signals in differ-
ent states of unconsciousness37,56,57,59,60. Here we show that in
unconsciousness, temporal organisation is affected also at the
network level in specific ways (i.e., with slower average speed but
relatively more acceleration and deceleration, with more pre-
dictable transitions and a less complex state space). The temporo-
spatial theory of consciousness4 postulates that the intrinsic
temporal-spatial organisation of the brain is fundamental to the
emergence of consciousness. In accordance to this theory’s pre-
dictions, we show that consciousness is associated with specific
autocorrelation properties and a more complex dynamic reper-
toire which would theoretically support subjective feelings of
continuity and fluctuations of states of consciousness over time45.
Similarly, the approach set forth in this paper may permit to
approximate an empirical measure of the size “cause effect
repertoire” in Information Integration Theory terms, (i.e., the
distribution of possible past and future states given the present
state; thus defining “information” in this theory2). Of particular
interest is that whilst increased complexity of (proximal and
distal) temporal sequences is in line with the entropic brain
hypothesis (stating that consciousness leads to an increase in
entropy1), the increased breadth of proximal transition distances
(which reproduced with Shannon entropy, see Supplementary
Note 4) would superficially seem to contrast this theory (see
also45). However, a deeper reading of this theory reveals that
consciousness is acknowledged to be associated with an organi-
sational effect which ultimately functions to reduce “surprising”
states of the organism at different levels (biological, psychological,
see30,44,61). Therefore, the increased moment-to-moment unpre-
dictability, but reduced variations in network transition speeds,
may represent functional organisational properties that emerge
with consciousness.

Higher temporal complexity of connectivity patterns over longer
periods of time are in consonance with a series of other recent
papers5,25,27,37,38,62 which report an increased richness of repertoire
of cortical states visited during consciousness in consonance with
theory1,2,4. However, these studies all use clustering approaches,
which, beyond potential methodological issues (e.g.63), rely on dis-
crete averaged states that are estimated across individuals and
conditions of awareness. This approach, although successful, dena-
tures the individual-specific temporal unfolding of experience and
neural dynamics, and often requires inverse inference (e.g.27). In
fact, we found relatively low absolute similarity in the dMM, per-
haps suggesting dynamics are perhaps best represented along con-
tinuums rather than by categorical assignment (for e.g., see Shine
and colleagues21). Nonetheless, we advance this body research by
showing that temporally linear, intrinsically-defined, non-clustered
spatial connectivity patterns show specific dynamic characteristics in
awareness, both in both proximal and distal time-points.

Due to the fact that the MM may represent an individual’s
exploration of a space of possible states, the present results also

lend themselves to a dynamic systems interpretation. The lower
dMM compressibility, the characteristics of dynamic connectivity
patterns in short term transitions, and the untethering of the
functional from the structural connectome may reflect differences
in the underling landscape describing possible state trajectories.
More specifically, reduced variation in speed may indicate that
the underlying dynamic landscape of consciousness tends to be
flatter overall, as shallower “basins” (i.e., attractors) would result
in less acceleration. Nonetheless, the unpredictability of short-
term transitions may indicate a more complex and detailed local
topology. Furthermore, the incompressibility of distally defined
states and the increased structure-function dynamical complexity
may perhaps indicate a higher dimensional, more complex,
state space.

In fact, Deco and Kringelbach6 suggest that the MM contains
information about the metastability of the system (the [in]stabi-
lity of system state changes over time8). The pharmacological and
lesion perturbations characterising the data most likely influence
the dynamic landscape of possible functional states making
transitions slower, less constant and more predictable. None-
theless, other studies suggest that the functional dynamics of
typical wakefulness is characterised by structured spatial-
temporal circuits16,21,27,64,65, which are discriminative between
different conscious5,27 and cognitive states14,15,20. This suggests
that state transitions in consciousness, are not only complex, but
also structured (as found in this study), and predicated by the
context and current and previous states. Thus, with the emer-
gence of complex awareness, additional “apparent" changes7 in
the dynamic landscape may arise due to the structured, relative
trajectory or “perspective” of the current brain state within its own
intrinsic space of past and future states4,42,43,45,66. Such an
interpretation of neural dynamics can be seen as intuitively
complementary to phenomenological and psychological
dynamics9,10,30,61,67,68, by which the specific (psychological) state
of a conscious system will determine its possible future states. In
other words, the “perspective” (positioning and direction; see31)
of a brain state within its intrinsic dynamic landscape would in
part correspond to a complementary psychological-experiential
“perspective”. This “dual-aspect” perspective can be potentially
identified with the system’s hierarchical inferences on its own
past and future states which imbue the present with subjective
meaning43 and determine its dynamics2. We tentatively propose
that the correspondence between network dynamics and phe-
nomenological unfolding may be considered a mapping between
mind and brain (for ontological elaborations see30,33,34,45,52).

We also expand on previous dynamic functional connectivity
studies25,27,36–38,62 by incorporating analyses that investigate how
the relationship between anatomical and functional connectivity
changes with different levels of awareness. We show that, in rela-
tion to the individual specific anatomical connectivity, non-
clustered functional patterns have more freedom to vary in
higher levels of awareness. This complex relationship is thought to
be a fundamental characteristic in normal conscious brain
dynamics in that it allows for an extensive repertoire of possible
states and therefore enables adaptation to the internal and external
environment47,48,69. In fact, previous studies, looking at anaesthesia
in macaque monkeys and rats35,70 and deep sleep in humans71,
show that cluster-defined or temporally-averaged functional con-
nectivity states become more similar to anatomical connectivity
during anaesthesia. We build on these results via a novel technique
that does not rely on clustering and show that the complexity of the
intrinsic relationship between functional and anatomical con-
nectivity decreases in humans according to severity of DOC diag-
nosis, thus tentatively providing evidence of phenomenological
value intended for such diagnoses72. We also show, for the first
time, that this consciousness-dependent dynamic relationship
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between functional and structural connectomes exists in the sub-
cortex and cerebellum as well as the cortex. These results can be
interpreted two ways. If DOCs are to be considered cortico-
thalamic disconnection syndromes (e.g.73,74), then white matter
pathology may be causing a mechanistic impairment to the breadth
of upstream cortical functional configurations48,69. However,
changes in the relationship between anatomical and functional
connectivity have been found in anaesthesia35,70, psychedelics75,
and deep sleep71. Furthermore, these effects are found in the
subcortex and cerebellum beyond the cortex. Therefore, it is
plausible the these results are partly driven by a decrease in the
experientially-driven dynamic self-organisation that would emerge
with consciousness1,2,4,5,69. Either way, unconsciousness is char-
acterised by the lack of possibilities to occupy different states
depending on previous or possible future (biological and experi-
ential) states (refer to “surprise”44 and “temporal thickness42).
Therefore, expanding on the dynamical systems interpretation
above, we speculate that in unconsciousness, dynamic self-
organisation will be tendentially driven by fixed biological con-
straints, (such as metabolism and white matter structure), rather
than being additionally driven by the contextual phenomenological
experience of the organism.

Another contribution of this study is that, whilst previous
dynamic functional connectivity studies focused on the
cortex5,25,27,35,37,62, we performed dynamic analyses on the
whole brain, and three subdivisions of it (cortex, subcortex and
cerebellum). The neural correlates of consciousness are often
thought to be localised in the cortex2,5. In fact, we show that the
cortex’s dMM compressibility has consistent unique predictive
power. Nonetheless, we also show that the subcortex’s temporal
properties are also consistently predictive of levels of con-
sciousness when considered on its own. Given the fundamental
role of subcortical structures in homoeostasis and fundamental
subjective feelings (e.g., hunger, fear)52,76 and the synergistic
nature of brain function, we speculate that the consciousness-
specific dynamical properties found in the present research may
be in part explained through subcortical tonic and phasic
neuromodulation21,77–79. Furthermore, the findings that the
cerebellum does show some consciousness-relevant variations
may be controversial. In fact, IIT initially stated that the cere-
bellum is not important for consciousness due to the lack of a
coexistence of functional specialisation, integration and feed-
back mechanisms80. Other work2,36 cites clinical cases of cer-
ebellar agenesis as evidence that its presence is not a necessary
condition of consciousness. Conversely however, specific clin-
ical cases of Hydranencephaly show that experiential content
may emerge without most of the cortex53,78. For example, a
paper describes four children defined as “decorticate” (and
therefore prognosticated with permanent UWS) that displayed
signs of affect, perceptual discrimination, social interaction,
play, aesthetic enjoyment etc.81. These authors suggest the
fortunate social-developmental context of these specific indi-
viduals may have made all the difference to the emergence of
awareness. Despite claims in consciousness research2,82,83,
there is in fact substantial evidence for the complex organisa-
tion of the cerebellum64,84, that it displays consciousness rele-
vant variations (e.g.85), and for its role in functions that are
relevant to contents of awareness such as language, perception
and emotion86–90. Although the cerebellum may not typically
be a necessary or sufficient condition for consciousness, it may
be hypothesised that the spatial temporal re-organisation of a
conscious system would contingently influence and be influ-
enced by all parts related to information content. Therefore, as
evidenced by this paper, it is likely that the (typically devel-
oped) cerebellum has a role in shaping the stream of
consciousness.

Methodological considerations. The meta-matrix approach has
been discussed before under the name of “functional connectivity
dynamics”6,47,48, however as opposed to the present phenomen-
ological approach, the original creators used the MM as a target
of computational modelling of whole brain dynamics. This work
praises the sensitivity to dynamics this approach affords, and
given the reproducibility of our results (see Supplementary
Notes 1, 2 and methods for description) we corroborate this. The
present approach, which was partly inspired by representational
similarity analysis91 and is analogous to topological data
analysis92,93, enables a description of an individual-specific brain
state space in which each state’s relationship to all others may be
represented. Furthermore, Battaglia and colleagues94 developed a
similar method of speed under a different framework to investi-
gate how ageing relates to functional network dynamics. It is
possible, with greater amounts of temporal data (e.g., electro-
encephalogram) that methods such as these may permit the study
of the structure of an individual’s stream of consciousness in case
studies and across specific experiential states. Such an approach
also may permit the study of a specific connectivity pattern (e.g.,
taking one column of the meta-matrix) by its relationship to all
others, or the specific differences between two sequential states
(by taking the difference between the connectivity pattern).
Although the present study tried to intrinsically represent the
stream of consciousness, we could not characterise the content of
the stream of consciousness as each connectivity pattern was
defined intrinsically via its similarity to all other patterns in
resting state data. The use of online experience sampling18 or
naturalistic paradigms (e.g., audio, music, or movie watching28,
may provide a specification of the content of an individual’s
stream of consciousness. Furthermore, uniting the present
approach with clustering techniques21,25,27 may permit dynami-
cal systems characterisations of specific (clustering-defined) states
(e.g., acceleration towards a DMN state).

In conclusion, we take a phenomenological approach to show
that consciousness is characterised by a temporal unfolding of
connectivity states that is quicker, stable (without much
acceleration/deceleration) and more unpredictable. We also show
that connectivity states are less easily described by their
relationship to distal timepoints and have more freedom to vary
in relation to their structural backbone. The present approach
may provide a principled empirical way to characterise the
perching and flights of the “stream of consciousness” (Fig. 1d) as
metaphorically described by William James over a century ago10.
We tentatively propose that this difference is in part driven by
additional emergent dynamics derived by the inferred future
possibilities of a present experienced state arising from its past
(the “perspective”, intended both within a dynamic landscape and
in the phenomenological7,42 sense). We also find that the
dynamics of the subcortex and cerebellum are affected in
unconsciousness and speculate that emergent “apparent”
dynamics related to experience will influence and be influenced
by all processes related to in-formation.

Materials and methods
Cambridge anaesthesia dataset
Participants. Ethical approval was obtained from the Cambridgeshire 2 Regional
Ethics committee. 18 out of 25 participants were used for the analyses due to
incomplete data in the cortex and procedure failure. All participants were native
English speakers (50% males) and healthy. Mean age was 33.3 (19–52). During
scanning two senior anaesthetists were present. Electrocardiography and pulse
oximetry were continuously measured. Blood pressure, heart rate and oxygen
saturation were also monitored regularly.

Anaesthetic protocol. Propofol sedation was administered intravenously via “target
Controlled infusion” with a Plasma Concentration mode. the Marsh pharmaco-
kinetic model was used to control an Alaris PK infusion pump (Carefusion,
Basingstoke, UK). This enables the anaesthesiologist to decide on a desired plasma
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“target”. This method permits the anaestheologist to regulate the infusion rates
using patient characteristics as covariates. Three target plasma levels were used –
no drug (awake control), 0.6 µg/ml (low sedation), 1.2 µg/ml (moderate sedation).
In this study only the moderate sedation is used. fMRI data for this condition was
acquired 20 minutes after termination of sedation, as a pharmacokinetic modelling
software (TIVATrainer, www.eurosiva.org) predicted plasma concentration would
reach zero after fifteen minutes. Before plasma target was changed, blood samples
were obtained at the end of each titration period. The level of sedation was
investigated verbally immediately before and after each scanning run. Three par-
ticipants were not replying after the moderate condition but were easily awoken
with loud commands.

10 minutes of plasma and effect-site propofol concentration equilibration was
allowed before cognitive tests in the scanner were commenced (auditory and
semantic decision tasks). During light sedation, mean (standard deviation) plasma
propofol concentrations was 304.8 (141.1) mg/ml, During moderate sedation, 723.3
(320.5) mg/ml and 275.8 (75.42) mg/ml for recovery. Mean (SD) total propofol
given was 210.15 (33.16) mg.

Magnetic resonance imaging protocol. A Trio Tim three tesla MRI machine
(Erlangen, Germany), with a twelve-channel head coil was used to acquire 32
descending interleaved oblique axial slices with an interslice gap of 0.75 mm and an
in-plane resolution of 3 mm. The field of view was 192 × 192, Repetition time and
acquisition time was 2 seconds while the echo time was 30 ms and flip angle 78. A
total of 5 min of resting state data was acquired for each condition. T1-weighted
structural images with 1 mm resolution were obtained using an MPRAGE
sequeunce with TR= 2250 ms, TI – 900 ms, TE= 2.99 ms flip angle= 9 degrees.

Disorders of consciousness dataset (DOC)
Patients. MRI data for 23 DOC patients were collected Between January 2010 and
July 2015 in the Wolfson Brain Imaging Center in Addenbrookes Cambridge, UK
(mean time post-injury 15.75 for UWS and 16.9 for MCS). Data collection received
approval from the National Research Ethics Service. These participants were
selected out of a bigger dataset due to their relatively intact neuroanatomy. These
patients were treated and scanned at the Wolfson Brain Imaging Center, Adden-
brookes hospital (Cambridge, UK). Written Informed consent was obtained from
an individual that had legal responsibility on making decisions on the patient’s
behalf. According to the diagnosis given by a physician, these participants were
split into vegetative state/unresonsive wakefulness syndrome and minimally con-
scious groups (n= 12 for UWS and 11 for MCS). The mean CRS-r score was 8.3
(standard deviation 2.03), For the UWS group 7, (S.D. 1.41) and 9.75 (S.D. 1.54)
For the MCS group. The mean age for the MCS group (39.18, S.D. 18.13); and for
the UWS group was (40.16) S.D. 13.63. In the MCS group nine of the patients had
a traumatic brain injury, one a cerebral bleed and one anoxia. In the UWS group
the aetiology was defined as traumatic brain injury for 2 patients, one hypoxia, one
edema, one having missing information and the remaining participants having the
pathology caused by anoxia. In the MCS group 7 were male; whilst in the VS group
8 were male. Due to incomplete coverage of the cerebellum, one UWS participant
was excluded from the cerebellar analyses.

Magnetic resonance imaging protocol -DOC dataset. A variable number of func-
tional tasks, anatomical and diffusion MRI images were taken for the DOC par-
ticipants. Only the resting-state data was used for this study. This was acquired for
10 minutes (300 volumes, TR= 2s) using a siemens TRIO 3T scanner. The
functional images were acquired using an echo planar sequence. Parameters
include: 3 × 3 × 3.75 mmm resolution, TR/TE= 2000 ms/30 ms, 78 degrees FA.
Anatomical images T1-weighted images were acquired using a repetition time of
2300 ms, TE= 2.47 ms, 150 slices with a cubic resolution of 1 mm.

Control Subjects DWI data. Given that in the propofol dataset no DWI data was
collected, we obtained data from control participants from another study looking at
improvement in cognitive deficits in diffuse axonal injury patients with
methylphenidate95. A total of 18 participants were included out of a total of 23. 5
participants were excluded due to incomplete data and equipment malfunction.
The included participants (6 females) the mean age was 34 (SD= 10.7).

London Ontario propofol (LON) dataset
Participants dataset. The second anaesthesia dataset was used to ascertain the
reproducibility of results. This data was acquired at the Robarts Research Institute
in London, Ontario (Canada) and was approved by the Western University Ethics
board. 19 healthy (13 males; 18–40 years), right-handed, English speakers with no
neurological conditions signed an informed-consent sheet and received monetary
compensation for their time. The research ethics boards of Western University
(Ontario, Canada) approved this study. Due to equipment malfunction or
impairments with the anaesthetic procedure three participants were excluded (1
male). Thus, 16 participants were used for the reproducibility analysis. See
reference28 for the original study.

Anaesthetic procedure LON dataset. The scanning procedure was supervised by one
anaesthetic nurse and two anaesthesiologists. Participants also completed an

auditory target-detection and a verbal recall task as an additional assessment of
level of awareness. An infra-red camera was also used to further assess level of
wakefulness.

Propofol was administered intravenously using a Baxter AS50 (Singapore);
stepwise increments were obtained via a computer-controlled infusion pump until
all three assessors agreed that Ramsay level 5 was reached (i.e., no responsiveness to
verbal or visual incitements). When necessary further manual adjustments were
made to reach target propofol concentrations. These targets were forecasted and
maintained constant by a pharmacokinetic simulation software (TIVA trainer,
European Society for Intravenous Anaesthesia, eurovisa.eu). The blood
concentration levels following the Marsh 3-compartment model were also
measured using this software. The initial propofol concentration target was 0.6 μg/
ml, and step-wise increments of 0.3 μg/ml were applied after which Ramsay score
was assessed. This process was repeated until participants ceased to answer verbally
and where rousable only by physical stimulation. When this occurred data
collection would begin. Oxygen titration was put in place to ensure SpO2 was
above 96%. The mean plasma concentration was 2.68 (1.92–3.44) whilst the mean
estimated effect site propofol concentration was 2.48 (1.82–3.14) μg/ml and
propofol concentration. The mean total mass of propofol administered was 486.58
(1.92–3.44). Variability in pharmacokinetics and pharmacodynamics are
characteristic in propofol administration. To ensure participant safety, scanner
time was kept to a minimum although airway security via intubation could not be
ensured. 8-minutes of resting state fMRI data was acquired.

Magnetic resonance imaging protocol. A 3-tesla Siemens Trio scanner was used to
acquire 256 functional volumes (Echo-planar images [EPI]). Scanning parameters
were: slices= 33, 25% inter-slice gap resolution 3 mm isotropic; TR= 2000 ms;
TE= 30 ms; flip-angle= 75 degrees; matrix= 64 × 64. Order-of-acquisition was
bottom-up interleaved. The anatomical high-resolution T1 weighted images (32-
channel coil 1 mm isotropic voxels) were acquired using a 3D MPRAGE sequence
with TA= 5 mins, TE = 4.25 ms, matrix= 240 × 256, 9 degrees FA.

Acquisition of diffusion-weighted data. The diffusion weighted MRI data was
acquired over several years for the DOC data. During this period the diffusion
weighted image acquisition scheme was changed. For the first 7 participants the
data was obtained using an echo planar sequence (TR= 8300 ms, TE= 98 ms,
matrix size= 96 × 96, 63 slices, slice thicknes = 2 mm, no gap, flip angle= 90°). In
this acquisition the diffusion gradients were applied along 12 non-colinear direc-
tions with 5 b= 0 and 5 b-values that ranged from 340 to 1590 s/mm2. The
subsequent acquisition scheme was applied to the remaining 16 participants and
the control cohort and used 63 directions with a b-value of 1000 s/mm2. There is
previous research on structural connectivity in DOC patients that use both of these
DWI acquisitions74,96. Of the 7 participants that had data obtained via the 12
direction 5 b-values acquisition, 3 were diagnosed as MCS and 4 were diagnosed as
UWS. To assess whether the different acquisition schemes may have affected
results we ran a confirmatory analysis which excluded the participants with a 12-
direction acquisition. The results reproduced and are presented in Supplementary
Note 10.

Diffusion weighted image preprocessing. MRtrix3 tools was used to pre-process the
DWI data (https://www.mrtrix.org/). The procedure involved denoising DWI data
by investigating data redundancy using principal component analysis (MRtrix3
dwipreproc command, https://www.mrtrix.org/). Each subject’s DWI data were
aligned to the b0 image using FSL’s eddy tool (MRtrix3 dwipreproc script). This
same tool was used to correct for eddy current distortions. Subsequently diffusion
gradient vectors were rotated to account for the subject motion estimated by the
eddy FSL command. The b1 field inhomogeneities of DWI data were corrected
using MRtrix3 dwibiascorrect command. Finally for each participant a binary mask
was generated using the MRtrix3 dwi2mask command. When, under visual
inspection, these masks were not deemed of sufficient quality, an alternative mask
was generated using FSL’s BET command and subsequently used for analysis.

The q-space diffeomorphic reconstruction (QSRD) of the DSI studio package97

(www.dsi-studio.labsolver.org), was used to reconstruct DTI data from the
preproccessed DWI images. This method calculated the distribution of orientations
of the density of diffusing water in a normalised space. It does so by reconstructing
the diffusion weighted images in native space and computing the quantitative
anisotropy (QA) in each voxel. The QA values are subsequently used to normalise
each subject’s brain to a standard space (in this case MNI152) using the SPM
nonlinear registration function. After having normalised the images to the standard
space, spin density functions were reconstructed with a mean diffusion distance of
1.25 mm and having three fibre orientations per voxel.

Diffusion tensor image data reconstruction and fibre tracking. The deterministic
tracking was performed on the reconstructed data using a modified FACT
algorithm98. The following parameters were set as: angular cut-off= 55°, step-
size= 1 mm, minimum length= 10 mm, maximum length= 400 mm, spin density
function smoothing= 0, QA threshold as determined by the colony-stimulating
factor DWI signal. The spatial termination of each streamline was automatically
assessed. We applied the default anisotropy threshold (i.e., 0.6) to the SDF ani-
sotropy values to create a white matter mask. This was used to discard streamlines
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that ended prematurely in white matter. 1,000,000 streamlines were constructed for
each individual.

Subsequently, the data were parcellated using parcellation schemes with
different granularities. These parcellations are described in Supplementary Note 1.

Preprocessing of functional and T1 images. All functional images were preprocessed
using the same in-house matlab script composed of SPM12 functions. After
removing the first 5 scans, we performed slice-timing correction (reference
slice= no. 17). After volumes were realigned to the mean functional image, these
were normalised to an EPI-template using the function SPM’s “old norm”. This
function was chosen as it was found, upon visual inspection, to produce the best
results, similarly to previous work (Calhoun et al., 2017). Re-alignment parameters
were produced and inserted as a covariate during time-series extraction. Participant
specific grey matter, cerebral spinal fluid and white matter masks were also created
using the segmentation function of SPM12. These were used to regress out spurious
physiological signal in time series extraction. We visually inspected all normalised
images with particular attention for the DOC dataset given the nature of this
cohort.

Time series extraction. We performed Denoising using the SPM-based software
CONN (17.f). We included movement parameters as a first-level covariate. We
regressed out CSF and white matter signals from the timeseries using the first five
principal components. To assess robustness of results we also ran an alternative
analysis in which global signal regression was used (Supplementary Note 2). We
used the ART quality-assurance/motion-artefact rejection toolbox (https://www.
nitrc.org/projects/artifact_detect) to further clean the timeseries data. We applied
linear detrending and a 0.008 to 0.09 Hz band pass filter. We also ran an alternative
analysis in which a high pass filter was used (Supplementary Note 2). We used the
nuisance variables obtained from the pre-processing of functional and T1 images
(i.e., 5 principal components from white matter masks and movement parameters)
to extract the timeseries. These timeseries were extracted in unsmoothed functional
volumes to avoid inflated correlations in adjacent regions of interest (parcellation
information presented in Supplementary Note 1; Table S1).

Dynamic connectivity matrices definitions. To obtain dynamic connectivity matrices
for each participant the recommendations of Preti and colleagues were followed99.
This included taking a 24-time point sliding window, and moving the window by
one time point (2s= 1 TR) for the definition of each graph. Similarity to previous
studies37 this permitted to maximise the number of graphs available. A gaussian
tempering was applied to de-weight the timepoints closer to the extremities of the
sliding window.

Following this procedure resulted in 122 connectivity matrices for the
anaesthesia dataset and 271 connectivity matrices for the DOC and 251 for the
London Ontario anaesthesia dataset. For the meta-matrix construction, we took
subsets of the data with higher numbers of timepoints in accordance with the
dataset with least timepoints. For the relationship between structural and
functional connectivity analysis we performed a confirmatory analysis using the
minimum common denominator of timepoints (presented in Supplementary
Note 10). We also applied an alternative dynamic functional connectivity
method100,101, namely instantaneous phase synchrony (Supplementary Note 2).
This used a narrow band-pass filter (0.03:0.07 Hz) which is thought to satisfy
Bedrosian’s requirement for phase synchrony analysis100,101 (the smaller the
bandwidth, the more likely meaningful phases can be estimated; however see
also25).

The meta-matrix analyses. The meta-matrix (MM) is a matrix displaying the
similarity between all connectivity matrices. It is obtained by vectorising and
correlating (Pearson’s r) each connectivity matrix. Each column is organised lin-
early in time. We also reproduce results using alternative distance metrics to define
the MM (similarity being the inverse of distance). These where the Manhattan
distance and the cosine distance metrics92,102 (Supplementary Note 2).

Visually, the MM is characterised by high similarities in proximal timepoints,
which decay as a function of time (this is an over-simplification, see dMM Fig. 3c).
We sought to explore whether a very simple synthetic model by which similarities
linearly or exponentially decay over time could explain the intrinsic dynamics of
certain conditions better. We named this the temporal decay of similarity model
(TDSM) which was created using an in-house matlab script. This is a weighted
model of decreasing similarity of connectivity matrices over time proximity (Fig. 1e
in main text), and thus displays higher values along the diagonal (where cells
represent similarities of proximal time-points). The TDSM essentially represents
intrinsic dynamics that never return on themselves (monotonically lower values as
a function of temporal distance), in which similarities decrease in a univocal and
predictable manner (exponentially or linearly). Given the novelty of this method,
we created three TDSMs; one with linearly decreasing similarity over time, one
with slow exponential decreasing similarity over time, and one with rapid
exponential decreasing similarity over time. The reason for the exponential models
is that they fit the data better (mean r value= 0.70 SD= 0.04) than the linear
model (mean r value= 0.53 SD= 0.05). The slowly decreasing exponential model
was created with the following matlab code: exp(linspace(log(0.0001),log(1),n)/3),
whilst the rapidly decreasing TDSM was created with

exp(linspace(log(0.0001),log(1),n)/1.5), n being the number of columns in the MM.
The results were comparable between the linear and exponential TDSMs
(Supplementary Note 3; Tables S2, S3).

To enable specific interpretation of the TDSM analyses, we then sought to
analyse the properties of successive temporal transitions. This information is
represented by the diagonals in the MM (excluding main diagonal which is always
1), which shows the similarity (i.e., distance) between two successive timepoints
(Fig. 2a). Measuring the distance over time gives an approximation of the rate of
change of intrinsic dynamics. We looked at the diagonals that are close to the main
diagonal (Fig. 2b), indicating short term transitions. In the main text we show
results for the first sub diagonal (thus each transition= 2s), but we repeated the
analyses averaging across different sub-diagonals. Specifically, until the 6th (12s)
and the 13th sub diagonal (26s), showing results are stable across temporal
sampling of rate of change (Supplementary Note 4). On the resulting timeseries we
calculated two measures of central tendency (mean and median; the latter reported
in the main text). We also calculated two measures of the breadth of the
distribution (standard deviation, and Shannon entropy, the former reported in the
main text as Shannon entropy is unstable with low numbers of datapoints55. Finally
two different measures of temporal complexity were calculated, effort to
compress55 and sample entropy (described below). Results reproduced robustly
across the different measures (Supplementary Note 4; Tables S4, S5).

We then took a different approach and investigated the columns of the MM
rather than the diagonals. The columns represent the similarity of one connectivity
pattern to all others available (Fig. 3a, rather than transitions between connectivity
patterns Fig. 2a). The aim of this analysis was to investigate the properties of the
wider state space as represented via the intrinsic dynamics (MM). Thus, the
similarity of one connectivity state in relation to all others indicates its position in
the wider landscape of measured states (in the past and future; see Tononi et al.,
2016; although their definition is probabilistic). To ensure the autocorrelation
values (values close to the main diagonal) did not influence results, we removed
this to create the distal meta-matrix (dMM; Fig. 3c). This off-diagonal MM
represents the similarity between timepoints that are distant between each other. It
is obtained by excluding the cells that are closest to the diagonal (which represent
similarities between connectivity matrices that are closer in time). An arbitrary
number of diagonal cells had to be chosen for exclusion. In this case we chose 13 as
is it half the number (+1) of timepoints included in each sliding window. However,
we also repeated the analyses using 24 cells for exclusion, thus ensuring the column
of interest had no datapoints in common with the connectivity matrices it was
compared to. On the distal timepoint MM (dMM), we calculated measures of
central tendency (mean and median), distribution variation (standard deviation
and Shannon entropy) and sequential complexity measures (sample entropy and
effort to compress, described below; Tables S6, S7). We repeated the analysis by
vectorizing the whole dMM instead of calculating the measures in a column
specific manner (i.e., position in state space of a connectivity pattern), and found
results reproduced, albeit with slightly lower effect sizes (Supplementary Note 5). In
the main text, results for the lower granularity parcellation (see Supplementary
Note 1; 126 regions; whole brain) for the Cambridge anaesthesia dataset ordered
with the DOC dataset are presented. See Supplementary Notes for reproducibility
of the independent predictive power of these measures (Tables S8, S9) and of
different subsystems (Tables S10–S12).

DTI to FC dynamic analysis. This analysis was created to test the hypothesis that
functional connectivity states had more freedom to vary in relation to the
underlying structural connectivity. The functional and structural data was par-
cellated with the same parcellation scheme and the functional matrices were
thresholded proportionally (taking a top percentage of connections) to match the
number of non-empty cells of the structural connectivity matrices on an
individual-by-individual basis. A similar approach to the MM was used by which
the similarity of all connectivity states (organised linearly in time) to the structural
connectivity matrix was calculated (using Pearson’s R). This yielded a vector of
numbers indicating the similarity in time of the functional connectivity state to the
structural connectivity. On this vector both effort-to-compress and sample entropy
were calculated, thus obtaining one number for each participant that was inserted
into the ordinal logistic regression (described below) as a predictor. Given that
there were differing numbers of available timepoints between the DOC and control
data we reduced the DOC data timepoints to the lowest common denominator.
Results reproduced across these analysis permutations (Supplementary Note 10,
Tables S13, S14). Furthermore, we reproduced the cortex, subcortex and cerebellar
results using alternative distance metrics to evaluate the structural functional
relationship. Similarly to the reproductions of the MM results, we used Manhattan
and Cosine distance. Whilst the Cosine distance reproduced results univocally, the
Manhattan distance only reproduced subcortical results (Supplementary Note 11;
Tables S15–S18).

Entropy measures. Entropy can be considered a measure of the rate of information
produced in dynamical systems. Sample entropy was specifically developed to
ameliorate the problems typically encountered in biological time-series (i.e., low
number of time-points and noise54). Sample entropy is conceptually derived from
Kolmogorov Complexity103. This states that if a complex system cannot be quickly
and easily summarised, then it is complex. Such complexity measures have been
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shown to reproduce across datasets and correlate to other complexity measures104.
Implementations of such notions of complexity has also been shown to correlate
with the meaningfulness of naturalistic stimuli; in-scanner behaviour, to be
reproducible across fMRI sessions and be robust to different parameters105–110.

Sample entropy works by taking two segments of timeseries of different lengths
and contrasts to what extent each of these timeseries explain the rest of the data
(via a distance measure, in this case Chebyshev). Sample entropy is calculated as
the ratio of the explanatory power (calculated via distance metric) of the smaller
(denoted A) and the larger segment (B) of data.

SampEn ¼ �log
A
B

Thus, higher values indicate decreased self-similarity, as the smaller segment
explains the data better and would indicate a fine grain description is more
appropriate, therefore indicating the signal is more complex.

We chose sequence lengths (A & B) of 2 and 1 as this produced robust results
and has been used in the past105. As suggested by the original paper54 we chose a
tolerance of 0.2 multiplied by the standard deviation of the time-series.

Given the novel approach used in this paper, we sought to confirm results with
an alternative entropy measure. Also derived from Kolmogorov complexity, Effort-
To-compress (ETC) relies on a lossless compression algorithm via Non-Sequential
Recursive Pair Substitution55. This algorithm has been shown to be an
improvement in efficiency compared to Shannon entropy and the Lempel-ziv
compression algorithm when applied to short and noisy sequences of data.

ETC works by iterating over the given sequence and substituting the most
frequently occurring pattern of a pre-established length with a new symbol. For
example, with the binary input of “00101101” and length of two, the algorithm
would substitute the pair “01” with a new symbol (i.e., 2) and that pair is the most
frequently occurring. Thus, the output string would be 02212. Given parity between
occurrence frequency of pairs, the first pair is substituted with the new symbol “3”,
thus giving 3212. This process is repeated until the output becomes constant or it is
reduced to one number. Thus 3212-> 412->52->6. In this example there are 5
iterations the algorithm needs to perform, thus indicating the degree to which that
sequence can be easily described, and therefore it’s (Kolmogorov) complexity.
Given that the highest possible output of ETC is the length of the original series
minus 1, the measure can be normalised thusly:

ETCnorm ¼ ETC
L� 1

In the case of real numbers, as is the one in this paper, the numeric sequence is
translated to a symbolic sequence by binning the data. We chose to use 10 bins as
higher number of bins seem to produce more stable results in shorter sequences55.

These measures (effort to compress and sample entropy) however consider
sequential information and show similar results. Shannon entropy on the other
hand is sensitive to the probability of values independently from sequential
information. Hence, we used Shannon entropy (as implemented in matlab) to
confirm the standard deviation results (variation in proximal timeseries).

Inferential analyses: ordinal logistic regression. To assess the hypothesis that the
dynamical complexity of connectivity states augmented with increasing levels of
awareness, ordinal logistic regressions were performed using the MASS R toolbox
(polr function, https://www.rdocumentation.org/packages/MASS/versions/7.3-53/
topics/polr). This is a regression model with ordinal categorical dependent vari-
ables and continuous independent variables. This is derived from the logistic
regression and ideally suited to this study for the little assumptions underlying it.
Nonetheless, multicollinearity was assessed when multiple predictor variables were
included and the proportional odds assumption was tested using Brants test (using
package ‘brant’); and where this failed (in RSFC to DTI analysis) by comparing the
model with parallel intercepts constrained and the same model without constrained
intercepts. The proportional odds assumption entails the model coefficients have a
proportional effect on each group; i.e., “the slope” estimated between each con-
dition (outcome variable) is the same or proportional. Whilst the TDSM and
structure function analyses were one sided (given the strong prediction that
complexity would increase in consciousness); the proximal and distal measures
were running as two sided given the absence of a strong hypothesis, specifically in
regards to measures of central tendency and distribution breadth. Nonetheless, in
the one-sided analyses, p values were always below 0.025. To increase interpret-
ability of Odds ratio values reported in the main text, these were calculated with
inverse ordering of conditions (i.e., unresponsive wakefulness syndrome > mini-
mally conscious state > sedation > control awake) in analyses that predicted
increases with levels of awareness (complexity of dMM and relationship between
structural and dynamic functional connectivity).

Data availability
The London Ontario Dataset is available (https://openneuro.org/datasets/ds003171). Due
to the clinical nature of the data, this will be made available upon reasonable request to
the corresponding author. All toolboxes used in this study are freely available and cited
appropriately in the text.
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